The Identification of Communication Signals Based on Fractal Box Dimension and Index Entropy

نویسندگان

  • Li Yi-bing
  • Li Jing-chao
  • Lin Yun
چکیده

The current recognition algorithms of communication signals often have high complexity and poor anti-noise performance. To this problem, the paper proposed a communication signal modulation identification algorithm, which is based on fractal box dimension and index entropy. This paper first extracts box counting dimension characteristics of signals which characterize signals’ complexity to classify 7 kinds of signals roughly. Then it extracts index entropy characteristics of signals which characterize the distributions of signals to subdivide them. Finally it uses the extracted features to recognize the modulation of signals by setting thresholds, simulates and calculates the error rate of the identification. Simulation results show that, the features extracted by this method can effectively classify the modulations of signals, and it can identify signals' types more effectively than the signal recognition method based on the information entropy. Due to the non-sensitive to noise quality of fractal box dimension and index entropy, it can get higher recognition rate in lower SNR.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Adaptive Segmentation Method Using Fractal Dimension and Wavelet Transform

In analyzing a signal, especially a non-stationary signal, it is often necessary the desired signal to be segmented into small epochs. Segmentation can be performed by splitting the signal at time instances where signal amplitude or frequency change. In this paper, the signal is initially decomposed into signals with different frequency bands using wavelet transform. Then, fractal dimension of ...

متن کامل

An Adaptive Segmentation Method Using Fractal Dimension and Wavelet Transform

In analyzing a signal, especially a non-stationary signal, it is often necessary the desired signal to be segmented into small epochs. Segmentation can be performed by splitting the signal at time instances where signal amplitude or frequency change. In this paper, the signal is initially decomposed into signals with different frequency bands using wavelet transform. Then, fractal dimension of ...

متن کامل

Adaptive Segmentation with Optimal Window Length Scheme using Fractal Dimension and Wavelet Transform

In many signal processing applications, such as EEG analysis, the non-stationary signal is often required to be segmented into small epochs. This is accomplished by drawing the boundaries of signal at time instances where its statistical characteristics, such as amplitude and/or frequency, change. In the proposed method, the original signal is initially decomposed into signals with different fr...

متن کامل

Diagnosis of B-CLL Leukemia Using Fractal Dimension

Background:Leukemia is cancer of blood and bone marrow cells. In general, there are four types of leukemia: chronic myelogenous leukemia (CML), acute myeloid leukemia (AML), B-cell chronic lymphocytic leukemia (CLL) and acute lymphoblastic leukemia (ALL).  Fractal geometry can be introduced as one of the effective ways to detect this type of cancer. In this study, with introduc...

متن کامل

Analysis of Resting-State fMRI Topological Graph Theory Properties in Methamphetamine Drug Users Applying Box-Counting Fractal Dimension

Introduction: Graph theoretical analysis of functional Magnetic Resonance Imaging (fMRI) data has provided new measures of mapping human brain in vivo. Of all methods to measure the functional connectivity between regions, Linear Correlation (LC) calculation of activity time series of the brain regions as a linear measure is considered the most ubiquitous one. The strength of the dependence obl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011